

PRESSURE / VACUUM RELIEF VALVE

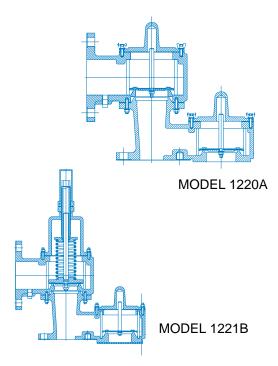
Model 1220A with Pipe-Away Feature

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials.
- Modular construction

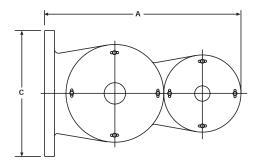
PRESSURE / VACUUM RELIEF VALVE WITH PIPE-AWAY FEATURE

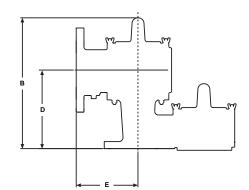
Model 1220A is used for pressure and vacuum relief where vapors must be piped away. Special pallets in the Model 1220A housing virtually eliminate the intake of air and the escape of vapors except during normal tank breathing, thus reducing the loss of product. These special pallets are engineered to allow only the intake or outlet relief necessary to maintain the proper working pressure, thereby protecting the tank from possible damage. Escaping vapors are piped away through a flanged outlet connection. This helps to provide increased fire protection and safety.

SPECIAL FEATURES


Model 1220A offers Groth's special "cushioned air" seating. Superior performing Teflon^{® 1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1220A has a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids pressure or vacuum buildup due to binding or clogging of the valve. Buna-N, Viton® and other seating diaphragms can be provided when required. Model 1221B may be spring loaded when required for use on blanketed tanks or other type installation requiring higher settings. To insure the proper alignment of seating surfaces there is peripheral guiding and a center stabilizing stem.

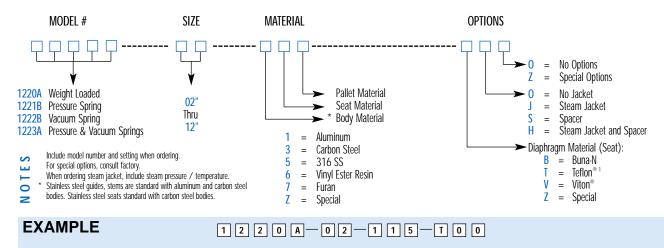
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 1220A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.



MODEL 1220A

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

							Opecifica		st to change	without not	ce. Certified	amension		upon request.
Inlet Flg.	Outlet Flg.	Max. Set Pressure Weight Loaded	Max. Set Vacuum Weight Loaded	Max. Setting Spring Loaded	Min. Setting Weight Loaded	Max. W.P. [†] for Min. Vacuum Setting	Min. Vac. Setting for Max. W.P. [†]	A Length (mm)	B Height (mm)	C Width (mm)	D (mm)	E (mm)	BB (mm)	Approx. Ship Wt. Lbs. (Aluminum)
2″	3″	11 oz/in ²	12 oz/in ²					14 1/4 ″	12 5/8 ″	7 1/2 "	7″	5 ^{1/2} ″	19 ^{5/8} ″	26
(50 mm)	(80 mm)	(48.2 gm/cm ²)	(52.7 gm/cm²)					(361)	(320)	(191)	(178)	(140)	(499)	(12 kg)
3″ (80 mm)	4" (100 mm)	13 oz/in ² (57.0 gm/cm ²)	11 oz/in² (48.3 gm/cm²)	JRE JM		See TP Vacuum and M		18″ (457)	15 ^{1/8} ″ (384)	9 " (229)	8 ^{1/8} ″ (206)	6'' (152)	23 ^{3/8} ″ (594)	34 (16 kg)
4″	6″	16 oz/in²	11 oz/in ²	PRESSURE	DED	anu n	NAWP	19 1/4 <i>"</i>	18 1/4 "	11″	9 ^{1/2} ″	6 ^{1/2} ″	28 5/8 ″	49
(100 mm)	(150 mm)	(70.3 gm/cm²)	(48.3 gm/cm²)		T L0/			(489)	(463)	(279)	(241)	(165)	(727)	(22 kg)
6″ (150 mm)	8″ (200 mm)	16 oz/in² (70.3 gm/cm²)	16 oz/in² (70.3 gm/cm²)	SPRING LOADED PRESSURE (1.05 kg. /cm ³) SPRING LOADED VACUUM (0.84 kg. /cm ³)	oz/in ² WEIGHT LOADED (2.20 gm. /cm ²)			26 ^{1/2} " (673)	23 ^{3/4} " (603)	13 ^{1/2} " (343)	12 ^{3/4} ″ (324)	8 ^{1/2} " (216)	38 ^{3/8} ″ (984)	93 (42 kg)
8″ (200 mm)	10" (250 mm)	16 oz/in ² (70.3 gm/cm²)	16 oz/in ² (70.3 gm/cm²)	15 PSIG SF 12 PSIG S	*0.5 oz			32 ^{1/2} " (826)	28 ^{1/2} " (723)	16" (406)	15 ^{1/4} ″ (387)	10 ^{3/4} ″ (273)	45 ^{1/4} ″ (1149)	137 (62 kg)
10" (250 mm)	12" (300 mm)	16 oz/in² (70.3 gm/cm²)	16 oz/in² (70.3 gm/cm²)					37 ^{3/4} ″ (959)	34 ^{1/2} " (876)	19″ (483)	18″ (457)	12 ^{1/2} " (318)	54 ^{1/8} " (1375)	186 (85 kg)
12" (300 mm)	14" (350 mm)	16 oz/in ² (70.3 gm/cm²)	16 oz/in ² (70.3 gm/cm²)					42 ^{3/4} " (1086)	39 ^{1/8} ″ (993)	21" (533)	20 ^{5/8} ″ (524)	15″ (381)	58 ^{7/8} ″ (1496)	260 (118 kg)

¹ W.P. = Working Pressure. ¹ On spring loaded valves, change model number. 150# R.F. drilling compatibility F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. ^{*}Some sizes require non-ferrous components to achieve 0.5 oz./sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 1220A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

1 Teflon is a registered trademark of DuPont Corporation.

Model 1220A Pressure Relief Capacity

	ressure P ₂)	Air F	low Capacit	t <mark>y at 100%</mark> 00 Standard				essure)
In WC	Öz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	6.87	13.3	25.2	52.7	82.6	135	175
1.00	0.58	7.39	14.3	27.1	56.6	88.8	145	188
1.73	1.00	9.71	18.8	35.6	74.3	117	190	247
2.00	1.16	10.4	20.2	38.2	79.8	125	205	265
2.60	1.50	11.9	23.0	43.5	90.8	143	233	302
3.00	1.73	12.8	24.7	46.8	97.5	153	250	324
3.46	2.00	13.7	26.6	50.2	105	164	268	348
4.00	2.31	14.7	28.6	53.9	112	177	288	374
6.00	3.47	18.0	35.0	65.9	137	215	351	456
8.00	4.62	20.7	40.4	75.8	157	248	404	525
10.0	5.78	23.1	45.1	84.6	175	276	450	584
12.0	6.93	25.2	49.4	92.4	191	301	491	638
15.0	8.66	28.1	55.2	103	211	335	546	709
20.0	11.6	32.2	63.7	118	241	383	625	811
25.0	14.4	35.8	71.2	131	267	424	692	898
30.0	17.3	39.0	77.9	143	289	460	751	975

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1
6" Model 1220A	

4 In WC set pressure [P_s]

7 In WC flowing pressure [P_f]

 Read flow capacity at set pressure from table
 Calculate over-pressure

- 3. Read "C" factor from table
 - 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.87

	"C" Factor Table											
% O P	0	1	2	3	4	5	6	7	8	9		
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50		
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58		
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65		
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72		
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 112,000 SCFH % OP = [(7 - 4)/4] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 112,000 = 97,440 SCFH

Model 1220A Pressure Relief Capacity

	essure	Air F	low Capacit		-			essure)
	P _s)			00 Normal C				
mm WC	mb	2″	3″	4″	6″	8″	10″	12″
22	2.16	0.19	0.37	0.71	1.48	2.33	3.80	4.93
50	4.90	0.29	0.56	1.07	2.23	3.50	5.72	7.42
75	7.35	0.36	0.69	1.31	2.72	4.28	6.99	9.10
100	9.80	0.41	0.80	1.51	3.14	4.93	8.05	10.4
125	12.3	0.46	0.89	1.68	3.50	5.51	8.99	11.7
150	14.7	0.50	0.98	1.84	3.82	6.02	9.80	12.7
175	17.2	0.54	1.06	1.99	4.12	6.49	10.6	13.7
200	19.6	0.58	1.13	2.12	4.39	6.92	11.3	14.7
225	22.1	0.61	1.20	2.25	4.65	7.33	12.0	15.5
250	24.5	0.65	1.26	2.36	4.89	7.71	12.6	16.3
275	27.0	0.68	1.32	2.48	5.11	8.07	13.2	17.1
300	29.4	0.70	1.38	2.58	5.33	8.42	13.7	17.8
375	36.8	0.78	1.54	2.88	5.91	9.40	15.3	19.8
500	49.0	0.90	1.78	3.30	6.75	10.7	17.5	22.7
625	61.3	1.00	1.99	3.67	7.46	11.9	19.4	25.1
750	73.5	1.09	2.18	3.99	8.07	12.9	21.0	27.3

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_{f} = Flowing pressure$ $P_{s} = Set pressure$ $\% OP = [(P_{f} - P_{s})/P_{s}] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1220A 2. Calculate over-pressure 100 mm WC Set Pressure [Ps] 3. Read "C" factor from table 175 mm WC Flowing Pressure [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

	"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 3,140 NCMH

% OP = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

 $Flow = 0.87 \times 3,140 = 2,732 \text{ NCMH}$

Model 1220A Vacuum Relief Capacity

	acuum PJ)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F										
In WC	Öz/Sq In	2″	3″	4″	6″	8″	10″	12″				
0.87	0.50	4.70	10.3	16.0	34.7	60.5	91.1	129				
1.00	0.58	5.05	11.0	17.2	37.3	65.0	97.9	138				
1.73	1.00	6.63	14.5	22.6	49.0	85.3	129	182				
2.00	1.16	7.12	15.6	24.2	52.6	91.6	138	195				
2.60	1.50	8.10	17.7	27.6	59.8	104	157	222				
3.00	1.73	8.70	19.0	29.6	64.2	112	169	238				
3.46	2.00	9.33	20.4	31.8	68.9	120	181	256				
4.00	2.31	10.0	21.9	34.1	74.0	129	194	274				
6.00	3.47	12.2	26.7	41.5	90.1	157	237	334				
8.00	4.62	14.0	30.6	47.7	103	180	272	384				
10.0	5.78	15.6	34.0	53.0	115	200	302	427				
12.0	6.93	17.0	37.1	57.8	125	218	329	465				
15.0	8.66	18.8	41.1	64.0	139	242	365	516				
20.0	11.6	21.4	46.8	72.9	158	276	415	587				
25.0	14.4	23.6	51.5	80.3	174	304	457	646				
30.0	17.3	25.4	55.6	86.6	188	327	493	697				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation
6" Model 1220A
4 In WC set vacuum [P _c]

7 In WC flowing vacuum [P_f]

- Read flow capacity at set vacuum from table
 Calculate over-vacuum
 Read "C" factor from table
- 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-vacuum at intersection of row 70 and colu	ımn 5
"C" factor at 75% OV = 0.87	

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50		
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58		
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65		
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72		
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 74,000 SCFH % OV = [(7 - 4)/4] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 74,000 = 64,380 SCFH

Model 1220A Vacuum Relief Capacity

	acuum ?_)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C									
mm WC	mb	2″	3″	4″	6″	8″	10″	12″			
22	2.16	0.13	0.29	0.45	0.98	1.71	2.58	3.65			
50	4.90	0.20	0.44	0.68	1.48	2.58	3.88	5.48			
75	7.35	0.24	0.53	0.83	1.81	3.15	4.74	6.70			
100	9.80	0.28	0.62	0.96	2.08	3.62	5.46	7.72			
125	12.3	0.31	0.69	1.07	2.32	4.04	6.09	8.60			
150	14.7	0.34	0.75	1.17	2.53	4.41	6.65	9.40			
175	17.2	0.37	0.81	1.26	2.73	4.75	7.16	10.1			
200	19.6	0.39	0.86	1.34	2.91	5.07	7.64	10.8			
225	22.1	0.42	0.91	1.42	3.08	5.36	8.08	11.4			
250	24.5	0.44	0.96	1.49	3.23	5.64	8.49	12.0			
275	27.0	0.46	1.00	1.56	3.38	5.90	8.88	12.6			
300	29.4	0.48	1.04	1.62	3.52	6.14	9.25	13.1			
375	36.8	0.53	1.16	1.80	3.91	6.81	10.3	14.5			
500	49.0	0.60	1.32	2.05	4.45	7.75	11.7	16.5			
625	61.3	0.66	1.45	2.26	4.90	8.54	12.9	18.2			
750	73.5	0.72	1.57	2.44	5.29	9.22	13.9	19.6			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1220A 2. Calculate over-vacuum 100 mm WC Set Vacuum [P_s] 3. Read "C" factor from table 175 mm WC Flowing Vacuum [P_f] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.87

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50		
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58		
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65		
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72		
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 2,080 NCMH % OV = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 2,080 = 1,810 NCMH

Model 1221B Pressure Relief Capacity

Set Pressure (P _s)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F									
PSIG	2″	3″	4″	6″	8″	10″	12″				
1.00	28.0	53.4	92.5	210	345	529	739				
2.00	40.3	77.4	134	304	500	767	1070				
3.00	50.2	96.9	168	381	625	960	1340				
4.00	58.8	114	198	448	736	1130	1577				
5.00	66.5	130	225	510	838	1286	1794				
6.00	73.7	144	250	568	932	1431	1997				
7.00	80.4	158	274	622	1022	1568	2188				
8.00	86.7	171	297	674	1107	1699	2371				
9.00	92.8	184	319	724	1189	1825	2546				
10.0	98.6	196	340	772	1267	1945	2714				
11.0	104	208	360	818	1343	2062	2877				
12.0	110	219	380	863	1417	2176	3036				
13.0	115	231	400	907	1489	2286	3189				
14.0	120	241	418	949	1559	2393	3339				
15.0	125	252	437	991	1627	2498	3486				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set pressure from table
6" Model 1221B	2.	Calculate over-pressure
4 PSIG set pressure [P _s]	3.	Read "C" factor from table
7 PSIG flowing pressure $[P_f]$	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.83

	"C" Factor Table											
%0P	0	1	2	3	4	5	6	7	8	9		
10		•••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40		
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52		
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62		
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71		
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79		
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86		
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93		
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00		

Flow = 448,000 SCFH % OP = [(7 - 4)/4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 448,000 = 371,840 SCFH

Model 1221B Pressure Relief Capacity

Set Pressure (P _s)	Air F	low Capacit	: y at 100% 00 Normal C				essure)
BarG	2″	3″	4″	6″	8″	10″	12″
0.07	0.82	1.57	2.72	6.16	10.1	15.5	21.7
0.10	0.99	1.89	3.28	7.45	12.2	18.8	26.2
0.15	1.23	2.36	4.09	9.28	15.2	23.4	32.6
0.20	1.43	2.76	4.80	10.9	17.9	27.4	38.3
0.25	1.62	3.14	5.44	12.3	20.3	31.1	43.4
0.30	1.79	3.48	6.04	13.7	22.5	34.5	48.2
0.35	1.95	3.81	6.61	15.0	24.6	37.8	52.7
0.40	2.10	4.12	7.14	16.2	26.6	40.9	57.0
0.45	2.25	4.41	7.66	17.4	28.5	43.8	61.1
0.50	2.39	4.70	8.16	18.5	30.4	46.6	65.1
0.55	2.52	4.98	8.64	19.6	32.2	49.4	68.9
0.60	2.65	5.25	9.10	20.6	33.9	52.1	72.6
0.70	2.89	5.76	10.0	22.7	37.2	57.2	79.7
0.80	3.13	6.25	10.8	24.6	40.4	62.1	86.5
0.90	3.35	6.72	11.7	26.5	43.5	66.7	93.1
1.00	3.56	7.18	12.5	28.3	46.4	71.2	99.4

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

"C" Eactor Table

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1221B 2. Calculate over-pressure 0.4 BarG Set Pressure [Ps] 3. Read "C" factor from table 0.7 BarG Flowing Pressure [Pf] 4. Calculate flow capacity

	U FALLUI TADIE												
%0P	0	1	2	3	4	5	6	7	8	9			
10		•••Consult Factory•••											
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40			
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52			
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62			
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71			
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79			
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86			
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93			
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00			

Flow = 16,200 NCMH

% OP = $[(0.7 - 0.4)/0.4] \times 100 = 75\%$

"C" = 0.83

Flow = 0.83 x 16,200 = 13,446 NCMH

Model 1222B Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F									
PSIG	2″	3″	4″	6″	8″	10″	12″				
1.00	13.8	30.5	52.9	120	197	302	422				
1.10	14.5	31.9	55.4	126	206	316	442				
1.20	15.1	33.2	57.7	131	215	330	460				
1.30	15.7	34.5	59.9	136	223	342	478				
1.40	16.2	35.7	62.0	141	231	355	495				
1.50	16.8	36.9	64.0	145	239	366	511				
1.75	18.0	39.6	68.7	156	256	393	548				
2.00	19.1	42.0	73.0	166	272	417	582				
2.25	20.1	44.3	76.9	174	286	439	613				
2.50	21.0	46.3	80.4	183	300	460	641				
2.75	21.9	48.2	83.7	190	312	478	667				
3.00	22.7	49.9	86.6	197	323	495	691				
3.25	23.4	51.4	89.3	203	333	511	713				
3.50	24.0	52.8	91.8	208	342	525	732				
>3.50		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 3.5 PS	SI				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OV} = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at set vacuum from table
6" Model 1222B	2.	Calculate over-vacuum
2 PSIG set vacuum [P _s]	3.	Read "C" factor from ta
3.5 PSIG flowing vacuum $[P_f]$	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-vacuum at intersection of row 70 and column 5 "C" factor at 75% OV = 0.83

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10		•••Consult Factory•••											
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40			
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52			
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62			
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71			
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79			
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86			
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93			
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00			

Flow = 166,000 SCFH

% 0V = [(3.50 - 2.0)/2.0] x 100 = 75%

"C" = 0.83

" factor from table

Flow = 0.83 x 166,000 = 137,780 SCFH

Model 1222B Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C									
BarG	2″	3″	4″	6″	8″	10″	12″				
0.07	0.41	0.90	1.55	3.52	5.77	8.87	12.4				
0.10	0.48	1.06	1.83	4.16	6.83	10.5	14.6				
0.11	0.51	1.11	1.92	4.35	7.14	11.0	15.3				
0.12	0.53	1.15	1.99	4.53	7.43	11.4	15.9				
0.13	0.55	1.20	2.07	4.69	7.70	11.8	16.5				
0.14	0.56	1.24	2.14	4.85	7.96	12.2	17.1				
0.15	0.58	1.27	2.20	5.00	8.21	12.6	17.6				
0.16	0.60	1.31	2.27	5.14	8.44	13.0	18.1				
0.17	0.61	1.35	2.33	5.28	8.66	13.3	18.6				
0.18	0.63	1.38	2.38	5.41	8.88	13.6	19.0				
0.19	0.64	1.41	2.44	5.53	9.08	13.9	19.4				
0.20	0.66	1.44	2.49	5.65	9.27	14.2	19.8				
0.22	0.68	1.49	2.58	5.86	9.62	14.8	20.6				
0.24	0.70	1.54	2.67	6.05	9.93	15.2	21.3				
>0.24		CONSU	lt factory fo	r vacuum set	TINGS GREATE	R THAN 0.24 I	BARG				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1222B 2. Calculate over-vacuum 0.12 BarG Set Vacuum [Ps] 3. Read "C" factor from table 0.17 BarG Flowing Vacuum [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 42% Over-vacuum at intersection of row 40 and column 2 "C" factor at 42% OV = 0.55

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10		•••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40		
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52		
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62		
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71		
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79		
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86		
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93		
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00		

Flow = 4,530 NCMH % OV = [(0.17 - 0.12)/0.12] x 100 = 42%

"C" = 0.55

Flow = $0.55 \times 4,530 = 2,491$ NCMH